Writing out the entire plan since the talk is a bit longer than usual.

1:15hrs
Outline:

- ZKVM

- Bonsai

zkVM architecture
RISC Zero Terminology
zkVM features
Proof Stack - Full Perspective
- Prove RISC-V execution with STARK -->
- Prove recursion/aggregation with STARK -->
- Run groth16 circuit to make it small
What's possible with the zkVM - Demos
- showcase different projects built on zkVM
- Fibonacci walkthrough
- Chess walkthrough

Explain what it is
- Where to use it
High level architecture

What's possible with Bonsai

- showcase different projects built on Bonsai
- Bonsai Pay

- Architecture overview

- code walkthrough

- Demo

RISC
ZERO

RISC Zero
ZK Hack IV Online

Get Rusty with RISC Zero: Build your ZK Rust Application

Brian Retford, CEO

Dr Iryna Tsimashenka, DevRel
Hans Martin, Solutions Engineer

What will we cover?

Intro to RISC Zero
zkVM Bonsai
» architecture » what is it? why?
» terminology » Bonsai Pay walk through
» features
» proof system

» quick start

Break 5-10 min lz RTSC

ZERO

Introduction to RO

¥ LT was started in PIiPX] and is focused on

revolutionizing the internet by creating the infrastructure
& tooling necessary for Web3 developers around the
globe to build zero-knowledge software. We are bringing
general-purpose computing to the zero-knowledge
enabling users to trust programs run

anywhere while allowing developers to use the tools they
already know and love.

IZ RISC
ZERO

RISC Zero zkVM

is based on two main components:

]
A

RISC-V ISA

open-source instruction set
architecture based on the reduced
instruction set computer that uses
32int registers

zk-STARKs
zero knowledge, scalable,

transparent argument of
knowledge cryptography

IZ RISC
ZERO

zkVM Architecture

E- ==

ZKVM

/

IZ RISC
ZERO

But, why is it important?
What canit do?

Developers can run Rust code through the zkVM and
prove the execution was done correctly.

The zkVM makes verifiable computation
easy to get started with

IZ RISC
ZERO

Q&A with Brian

IZ RISC
ZERO

Terminology

IZ RISC
ZERO

The program running inside the zkVM.
The system the zkVM runs on.

Part of zkVM that generates a proof.

IZ RISC
ZERO

Guest Code
[-X-X-)

|</>°§

application that

ZKVM

gets proven Host The system the
ZKVM runs on

o P

)

-0
=TT
-0 =

executable format Reasonable for
for the RISC-V generating the
instruction set execution trace

Execution Validates and
trace of the proves a guest
program program

constructing a
receipts

Proving

Emulated guest, Guest
Host sends private data

Executes code,
Commits results

) Receibt to receipt
Forwards Returns to host as P
receipt to
skeptics proof of compute

RISC

Verifier g s

A receipt attests to valid execution of a
guest program.

The portion of the receipt that contains
the public outputs of a guest.

Hash of the proof that is passed for validation.

IZ RISC
ZERO

Receipt: Verification

Receipt

/\

Journal
The public
outputs of the
guest program

Cryptographic
zero-knowledge proof that
the journal is the output of the
program whose “hash”

is included in the seal

Advanced:
Let's look under the hood

IZ RISC
ZERO

Advanced: What's in a Receipt?

The seal of a RISC Zero zkVM receipt is a zk-STARK
Scalable Transparent ARgument of Knowledge

The prover & verifier
Use and
With the Fiat-Shamir heuristic implemented using SHA-2
To prove/verify that the execution trace
Satisfies appropriate constraints

IZ RISC
ZERO

zkVMasa VM

The RISC Zero zkVM is a virtual machine with a RISC-V
instruction set architecture (ISA)

Open

Lightweight

Common compilation target

When you execute guest code, it executes instructions from
this ISA in the same way any other implementation of this ISA in
the same way any other implementation of this ISA would do

Extensions for SHA and finite fields

Advanced: Execution trace

Not a Virtual Machine
The prover records the state of the VM as an execution trace
Each row is a clock cycle
Each column is aregister

If the only thing you care about is proving/checking correct
execution, this is enough. But...
zero-knowledge

IZ RISC
ZERO

Advanced: Trace as Withess

Why is verifying the trace?
The matches the claimed code
The results are as claimed
There is computational integrity: each step must be what a
RISC-V processor would do

We encode the trace algebraically
The above conditions become algebraic constraints
The encoded trace is called withess

IZ RISC
ZERO

Continuations

Why get Excited???

Max Computation Size
Before Continuations: 16 million cycles

After Continuations:

IZ RISC
ZERO

Proof System

IZ RISC
ZERO

General purpose zkVMs are here

(Program\ —
. {\/ I\/I} - output
Program| _——
Inputs
& J
. Receipt
\ Program -
/Program {Z kv M} (aka journal)
\InDUtS J Proof

RISC
ZERO

Two STARK Circuits
RISC-V RECEIPT
CIRCUIT
RISC-V RECEIPT
CIRCUIT
RISC-V RECEIPT
CIRCUIT \
RISC-V RECEIPT
CIRCUIT

RECURSION| __, [RlEe=z)
/ CIRCUIT

RECURSION RECEIPT
CIRCUIT
RECURSION | ___, Ex=eia)
CIRCUIT

IZ RISC
ZERO

EXECUTOR

‘Jo -

The Emergent Pattern

-
- 0
=+ o0

o|o 0 o|0 =
- -
-
o
o_‘°"
-
o
-

(<]

ala a
ala
-0 .
4lo o

=]

o|o o
o

[

RECEIPT -
—>—> RECEIPT
— [prover] —
— [prover | —
— [prover | —>

RECURSION
CIRCUIT

.

el RECEIPT

RECURSION | — [dE¢E8l) —| RECURSION |— [d=eElgf —>
CIRCUIT CIRCUIT

!

RECURSION
CIRCUIT

.
.
.
. .
.
.

KZG/Groth16

RIS | GROTH 16 |
CIRCUIT

) RISC
ZERO

Example Walkthrough
of Factors

IZ RISC
ZERO

methods/guest/src/main.rs

1 #!'[no_main]

2 // If you want to try std support, also update

4

the guest Cargo.toml file
3 #![no_std] // std support is experimental

5 use riscO_zkvm::guest::env;

6

7 riscO@_zkvm::guest::entry!(main);

8

9 pub fn main() {

10
1Lt
112
s
14
15
16
17/
18

19
20
21

a.checked_mul(b).expect("Integer overflow!");

}

// TODO: Implement your guest code here
let a: ub4 = env::read();
let b: u64 = env::read();
if a == | | == 1 {
panic!("Can't do")

let product =

env::commit(&product);

host/src/prover.rs

16

18
19
20
21
22
23
24
745)
26
27
28
29
30

use methods: :{
FACTORS_ELF,
FACTORS_ID
};
use risc@_zkvm::{default_prover, ExecutorEnv};
fn main() {
// Initialize tracing. In order to view logs, run ‘RUST_LOG=info cargo run’
env_logger::init();
let a: ub4 = 17;
let b: u64 = 15;

// let input: u32 = 15%2°27 + 1;
let env =
ExecutorEnv::builder().write(&a).unwrap().write(&b).unwrap().build().unwrap();

// Obtain the default prover
let prover = default_prover();

// Produce a receipt by proving the specified ELF binary.
let receipt = prover.prove_elf(env, FACTORS_ELF).unwrap();

let _output: u32 = receipt.journal.decode().unwrap();
println!("I know the factors of {}, and I can prove it!", _output);

// Optional: Verify receipt to confirm that recipients will also be able to
// verify your receipt
receipt.verify(FACTORS_ID).unwrap();

! Iz RISC
ZERO

methodslguestlsrclmain.rs Import functions for interacting
1 with the host environment

1 #![no_main]
2 // If you want to try std support, also upda??

the guest Cargo.toml file P 4

3 #1[no_std] // std support is ezge@neﬂ?az

4

* use risco_shoms sguests env;

6 .

7 risc@_zkvm::guest::entry!(main); Read the ObjeCtS from the host

/ 7

9 pub fn main() { V' 4

10 // TODO: Implement your guest code /7ere,,

11 let a: u64 = env::read(); >

12 let b: u6b4 = env::read(); —

13

14 ifa=1 || b==1{

15 panic!("Can't do")

}3 ’ Commit the public

18 let product = ,7 output to the journal
a.checked_mul(b).expect("Integer overflowy P 4

19 env::commit(&product); o e» =

20 }

21

IZ RISC
ZERO

) host/src/prover.rs
Pick 2 numbers

1 use methods: :{
2 FACTORS_ELF,
Set up the Executor \ 3 FACTORS_ID
o 4 };
. En‘"rqnme.nt N \ 5 use riscO_zkvm::{default_prover, ExecutorEnv};
This holds configuration details \ 6
that inform how the guest 7 fn main() {
environment is set up prior to guest \ \ 8 // Initialize tracing. In order to view logs, run ‘RUST_LOG=info cargo run’
. 9 env_logger::init();
code execution ~
‘ 11
LS 12
& 13
\ < 14 // let input: u32 = 1542727 + 1;
Obtain default prover -, 5 |letew-= , , _
‘ ExecutorEnv: :builder().write(&a).unwrap().write(&b).unwrap().build().unwrap();
N 16
S o« 17 AimObtain the default prover.
. @ oo e, let prover = default_prover();
Prove the ELF Binary 19
20 // Produce a_receipt by proving the specified FLF binary.

and return a receipt

‘ 21 let receipt = prover.prove_elf(env, FACTORS_ELF).unwrap();
Toam-- <
23 let _output: u32 = receipt.journal.decode().unwrap();
Extract output - - g println!("I know the factors of {}, and I can prove it!", _output);
o ‘- = a
from journal 26 // Optional: Verify receipt to confirm that recipients will also be able to
27 // verify your receipt
- » 28 receipt.verify(FACTORS_ID).unwrap();
. . . =) 29
Verify the integrity of g =g I) RISC
thisreceipt w.image id ZERO

Quick start
with zkVM
[m]

IZ RISC
ZERO

What’s possible?

IZ RISC
ZERO

Fibonacci demo

IZ RISC
ZERO

Chess demo

IZ RISC
ZERO

What if | don’t want to run the zkVM
locally? Is there a remote option?

Bonsai

IZ RISC
ZERO

Bonsai

BONSAI
» Remote proving creron I e
. =T

>> We prO‘"de the Distributed RISC Zero zkVM

infrastructure
» Ideal for heavy

computations & fast

proving

» Offchain computation

Bonsai Architecture

OFF-CHAIN

@ You can send proof Bonsai

HTTP requests off-chain Relayer

Client »

Our contract emits
events collected by

ON-CHAIN the Bonsai Relayer

Or you can invoke a

proof request directly

from your contract Bonsai
Relay

contract

¢

User
contract

Results are sent to
your contract via a
callback function

BONSAI

We run your
program off-chain

We prove that your
code was executed in a
way anyone can verify

IZ RISC
ZERO

What's possible?

IZ RISC
ZERO

Bonsai Pay

IZ RISC
ZERO

Questions?

SCAN ME!

ooooo Docs)

Iz RISC
ZERO

